Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach123

نویسندگان

  • Alessandro Barri
  • Yun Wang
  • David Hansel
  • Gianluigi Mongillo
چکیده

The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission--thus disregarding variability--or on the fluctuations of the responses in steady conditions to characterize variability--thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic Plasticity: Short Term

Chemical synapses are rarely static transmitters of information between neurons. Their effectiveness waxes and wanes, depending on the frequency of stimulation and the history of prior activity. At most synapses, repetitive highfrequency action potentials (often called a tetanus) initially result in a rapid growth of successive postsynaptic potential (PSP) amplitudes, called synaptic facilitati...

متن کامل

A fast synaptic potential mediated by NMDA and non-NMDA receptors.

A fast synaptic potential mediated by NMDA and non-NMDA receptors. J. Neurophysiol. 78: 2693-2706, 1997. Excitatory synaptic transmission in the CNS often is mediated by two kinetically distinct glutamate receptor subtypes that frequently are colocalized, the N-methyl--aspartate (NMDA) and non-NMDA receptors. Their synaptic currents are typically very slow and very fast, respectively. We examin...

متن کامل

Application of the Triangular Model in quantifying landfill gas emission from municipal solid wastes

Municipal solid waste landfills are significant parts of anthropogenic greenhouse gas emissions. The emission of significant amount of landfill gas has generated considerable interest in quantifying such emissions. The chemical composition of the organic constituents and potential amount of landfill gas that can be derived from the waste were determined. The chemical formulae for the rapidly bi...

متن کامل

Application of the Triangular Model in quantifying landfill gas emission from municipal solid wastes

Municipal solid waste landfills are significant parts of anthropogenic greenhouse gas emissions. The emission of significant amount of landfill gas has generated considerable interest in quantifying such emissions. The chemical composition of the organic constituents and potential amount of landfill gas that can be derived from the waste were determined. The chemical formulae for the rapidly bi...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016